skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sun, Zekun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When representing high-level stimuli, such as faces and animals, we tend to emphasize salient features—such as a face’s prominent cheekbones or a bird’s pointed beak. Such mental caricaturing leaves traces in memory, which exaggerates these distinctive qualities. How broadly does this phenomenon extend? Here, in six experiments ( N = 700 adults), we explored how memory automatically caricatures basic units of visual processing—simple geometric shapes—even without task-related demands to do so. Participants saw a novel shape and then immediately adjusted a copy of that shape to match what they had seen. Surprisingly, participants reconstructed shapes in exaggerated form, amplifying curvature, enlarging salient parts, and so on. Follow-up experiments generalized this bias to new parameters, ruled out strategic responding, and amplified the effects in serial transmission. Thus, even the most basic stimuli we encounter are remembered as caricatures of themselves. 
    more » « less
  2. A plain, blank canvas does not look very beautiful; to make it aesthetically appealing requires adding structure and complexity. But how much structure is best? In other words, what is the relationship between beauty and complexity? It has long been hypothesized that complexity and beauty meet at a “sweet spot,” such that the most beautiful images are neither too simple nor too complex. Here, we take a novel experimental approach to this question, using an information-theoretic approach to object representation based on an internal “skeletal” structure. We algorithmically generated a library of two-dimensional polygons and manipulated their complexity by gradually smoothing out their features—essentially decreasing the amount of information in the objects. We then stylized these shapes as “paintings” by rendering them with artistic strokes, and “mounted” them on framed canvases hung in a virtual room. Participants were shown pairs of these mounted shapes (which possessed similar structures but varied in skeletal complexity) and chose which shape looked best by previewing each painting on the canvas. Experiment 1 revealed a “Goldilocks” effect: participants preferred paintings that were neither too simple nor too complex, such that moderately complex shapes were chosen as the most attractive paintings. Experiment 2 isolated the role of complexity per se: when the same shapes were scrambled (such that their structural complexity was undermined, while other visual features were preserved), the Goldilocks effect was dramatically diminished. These findings suggest a quadratic relationship between aesthetics and complexity in ways that go beyond previous measures of each and demonstrate the utility of information-theoretic approaches for exploring high-level aspects of visual experience. 
    more » « less